
620	 volume 118 | number 5 | May 2010  •  Environmental Health Perspectives

Research

Global climate change remains one of the big-
gest environmental threats to human welfare 
over the coming century. Despite representing 
only one source of possible increases in mor-
bidity and mortality, changes in the severity 
and global distribution of vector-borne dis-
eases are thought to represent a significant bio-
logic impact of this change [Intergovernmental 
Panel on Climate Change (IPCC) 2007; Patz 
et al. 1996]. Along with schistosomiasis and 
dengue infection, malaria is considered one 
of the major vector-borne diseases most sensi-
tive to changing environmental conditions 
(Martens 1998; Martens et al. 1999; Rogers 
and Randolph 2000), although a considerable 
range of infectious diseases, including chol-
era (Pascual et al. 2002), lymphatic filariasis 
(Sattenspiel 2000), and tick-borne encepha-
litis (Randolph and Rogers 2000) may also 
be affected, with potentially profound conse-
quences for human health.

Environmental variables such as tem-
perature, humidity, rainfall, and wind speed 
affect the incidence of malaria, either through 
changes in the duration of mosquito and 
parasite life cycles or influences on human, 
vector, or parasite behavior (Gubler et  al. 
2001; Koenraadt et al. 2004). Despite this 
sensitivity of transmission to changes in 

environmental variables, and in spite of being 
one of the biggest causes of worldwide mor-
tality due to infectious diseases (World Health 
Organization 2008), there is still substantial 
debate as to the exact role that climate plays 
in driving malaria epidemics (Hay et al. 2002, 
2005; Lindsay and Martens 1998; Pascual 
et al. 2006, 2008; Patz et al. 2002; Zhou et al. 
2004). This uncertainty derives, in part, from 
the fact that although there is a considerable 
body of work using empirical-statistical mod-
els to investigate the link between environ-
mental variables and transmission intensity of 
vector-borne diseases (Rogers and Randolph 
2000), only limited attempts have been made 
to incorporate environmental variables into 
mathematical models describing malaria 
transmission (Craig et al. 1999; Hoshen and 
Morse 2004; Lindsay and Birley 1996). The 
importance of this gap arises from the fact 
that process-based dynamical models may 
not only facilitate a greater understanding 
of the relative importance of internal versus 
external drivers of transmission, but may bet-
ter address the effects of complex feedbacks 
and nonlinear processes typically underlying 
disease transmission (Martens 1998). Hence, 
such models, by allowing meaningful capture 
of the dynamic multiplicative processes and 

thresholds underlying malaria endemicity and 
seasonal extinction, as well as disease emer-
gence in new regions as climatic conditions 
change, provide a credible basis for predic-
tion beyond the range of current climatologic 
experience. Models also represent valuable 
strategic tools for policy makers evaluating 
contingency, mitigation, and abatement strat-
egies and the need for mechanistic models 
to supplement statistical approaches has 
been increasingly recognized in recent years 
(Pascual et al. 2006).

Developing reliable modeling frameworks 
for integrating the predictions of large-scale 
climate microsimulations and infectious dis-
ease models is inherently challenging, as it 
involves not only robust treatment of uncer-
tainty, variability, and scale dependency in 
the modeled physical and biologic processes 
and input climate data, but also the for-
mulation of realistic climate-based disease 
transmission models. Modeling work to 
date incorporating environmental variables 
into dynamic malaria transmission models 
has focused almost entirely on the impact of 
changes in temperature (however, see Hoshen 
and Morse 2004), despite increasing recog-
nition that temperature and rainfall could 
have synergistic effects on transmission (Zhou 
et al. 2004). Moreover, although changes in 
mean climatic conditions may drive long-
term trends in incidence, temporal variabil-
ity may be epidemiologically more relevant 
(McKenzie et al. 2001; Zhou et al. 2004), 
suggesting that understanding the role of cli-
matic heterogeneities constitutes another key 
modeling requirement. Ultimately, the next 
generation of process-driven models must also 
address the changing social and physical envi-
ronment of at-risk communities, which inter-
act with environmental variables to generate 
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conditions suitable for pathogen establish-
ment, transmission, and extinction.

In this study, we describe the first phase of 
research in developing an integrated modeling 
framework for evaluating and predicting the 
likely impact of climate change on malaria 
transmission. Although the framework will 
ultimately seek to combine climate model-
ing with mathematical models, as well as the 
socioecology and policy dimensions of disease 
transmission, we focus on the construction of 
a generalized, realistic, climate-based malaria 
transmission model that allows capture of the 
simultaneous effects of rainfall and tempera-
ture on infection dynamics. We follow this 
up by highlighting how analyses of such mod-
els can enable examination of critical and gen-
eral dynamical issues not addressed to date, 
namely, the impact on mosquito populations 
of changes in climatic conditions, analysis 
of malaria invasion dynamics in disease-free 
regions and the effects of seasonal variability 
in climate variables on endemic prevalence, 
invasion, and extinction. We also highlight 
the limitations of current mathematical mod-
eling that address these issues, with the objec-
tive of stimulating further interdisciplinary 
research to improve our understanding. We 
apply model predictions to expected changes 
in transmission for the Republic of Tanzania 
as part of an attempt, in partnership with 
colleagues from the National Institute for 
Medical Research, to understand the likely 
impact of climate change on malaria in cur-
rently endemic regions and to illustrate the 
strategic value to policy makers of robust, reli-
able, and validated mathematical models.

Materials and Methods
Climate-driven mathematical models of 
malaria transmission dynamics. Mathematical 
frameworks for modeling the effects of cli-
mate on infectious disease dynamics may con-
sider deterministic or stochastic transmission 
models embedded within static or fluctuat-
ing environments. The equations governing 
weather and climate models are deterministic, 
but there is extreme sensitivity to initial condi-
tions; Grenfell et al. (1995) also documented 
chaotic behavior in infectious disease mod-
els. Thus, the resulting interactions are highly 
complex, and developing mathematical frame-
works to understand the interaction between 
these systems is inherently challenging. We 
were motivated to develop and analyze the 
foregoing model for two reasons. First, there 
is undoubtedly value in taking a hierarchical 
approach beginning with generalized mod-
els that, although coarse-grained, allow gen-
eral insights regarding the impact of climate 
change on malaria transmission. Second, our 
focus is on unraveling the impact of global 
change on transmission dynamics, rather than 
on equilibrium outcomes alone. We believe 

that understanding such dynamics will, by 
providing information on disease extinction, 
emergence, and invasion rates, be of major 
strategic value to policy makers in developing 
interventions relevant to health planning.

Our model assumes the standard com-
partmental structure typical of microparasitic 
infections in which the mosquito population 
is divided into the number of those suscep-
tible to infection, mosquitoes exposed but 
not infectious, and those that are infectious 
and remain infectious until they die. Humans 
follow an identical disease history, and we 
assume permanent immunity such that infec-
tious individuals progress to a removed class 
(whose individuals cannot become rein-
fected) at a rate determined by the dura-
tion of infectiousness. We also included the 
effects of weather on Anopheles biting rates, 
demographic parameters, the duration of 
the Plasmodium life cycle on temperature 
(Martens 1998), and the dependence of the 
emergence rate of adult mosquitoes on pre-
cipitation, which influences the dynamics of 
immature vectors [see Supplemental Material, 
(doi:10.1289/ehp.0901256)].

Of course, the effects of climatic vari-
ables are far more complex and considerable 
research is required to quantify and capture 
such effects within mathematical models. For 
example, in addition to the recognized effects 
of temperature and rainfall on the vector and 
parasite populations under standard or extreme 
environmental conditions and the interplay 
between the two (Zhou et al. 2004), disease 
models should ultimately consider a range of 
environmental drivers alongside atmospheric 
variables, including land use changes and 
hydrologic processes. Here, the biology and 
epidemiology of transmission, together with 
the assumed effects of temperature and rain-
fall, have been deliberately simplified to more 
clearly illustrate the techniques and insights 
possible using climate-driven disease models 
and to strike a balance between simulation 
models (permitting almost arbitrary hetero
geneity) and simpler analytically tractable 
approaches. Ideally, malaria models should 
account for a range of more complex epide-
miologic factors that affect disease dynamics, 
such as a) more refined modeling of the subtle-
ties of human immunity; b) Plasmodium strain 
heterogeneities; c) multiple infections and 
coinfections; d) age (and genetic factors) that 
account for human susceptibilities and infec-
tivities; e) human movement patterns; f ) short-
range vector dispersal and heterogeneities in 
Anopheles species; g) socioeconomic conditions; 
and h) the emergence of drug resistance. 

An important issue in environmentally 
driven infectious disease systems is identify-
ing the most appropriate spatial and tempo-
ral scale at which to model. However, this 
will be driven by the questions in hand, data 

availability for parameterization, and the geo-
graphic scale over which the model will be 
calibrated, validated, and applied. Thus, fine-
grained approaches will be important to guide 
interventions at the local level but may not 
be required for strategic planning on larger 
scales. Also, they are not only likely to be too 
computationally intensive to apply over global 
scales, but may be incompatible with climate 
data [such as those from General Circulation 
Models (GCMs)] available to parameterize 
them. Here, our objective is to adopt a coarse-
grained dynamic model to explore the general 
dynamical impact of climatically driven sys-
tems on malaria transmission, with the spatial 
nature of model output the result of param-
eterization by local values of temperature and 
rainfall.

The severity of infectious diseases can be 
quantified through the basic reproduction 
number R0, a static measure of disease severity 
quantifying the expected number of secondary 
cases generated per infectious human intro-
duced into an otherwise susceptible popula-
tion. We can calculate R0 for the transmission 
model adopted here by examining the stabil-
ity of the disease-free equilibrium, providing 
we ignore temporal variations in temperature 
and rainfall. In this case, we obtain the stan-
dard expression obtained for similar models 
elsewhere that
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where M is the total number of mosquitoes, 
T and R denote temperature and rainfall, 
respectively; a is the biting rate per day per 
mosquito, b1 is the proportion of bites by 
susceptible mosquitoes on infectious humans 
that produce infection, b2 is the proportion 
of bites by infectious mosquitoes on suscep-
tible humans that produce infection, lM(T ) 
is the proportion of infected mosquitoes that 
become infectious, γ is the rate at which 
infectious humans recover and acquire immu-
nity, µ(T ) is the daily mortality rate of adult 
mosquitoes, and N is the total number of 
humans [see Supplemental Material, Table 2 
(doi:10.1289/ehp.0901256), for parameter 
definitions], whereas the derivation of R0 with 
temperature and rainfall seasonality is consid-
erably more complex (Bacaër 2007; Bacaër 
and Ouifki 2007). Estimation of R0 deter-
mines whether malaria outbreaks eventually 
become endemic (guaranteed in determinis-
tic models when R0 > 1) and the prevalence 
to which the system tends, given here by 
N(R0 – 1) ÷ (R0 + σ) for the human popula-
tion [where σ = a(T )b1 ÷ µ(T ) is Macdonald’s 
index of stability (Macdonald 1957)]. The 
rate of progression to the endemic state is 
determined by the invasion dynamics, charac-
terized by the real-time growth rate r.
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Results
Anopheles mosquito population dynamics. 
The development of realistic, validated mod-
els that capture the dynamics of anopheles 
populations by climate remains an impor-
tant research area and a crucial component 
toward improving our understanding of 
malaria transmission across a range of envi-
ronmental conditions. For Anopheles mos-
quitoes, the dependence of abundance on 
climate has been considered within simula-
tion models (Depinay et al. 2004) through 
empirical work (Lindblade et al. 2000) and 
via hydrologic impacts on population dynam-
ics (Shaman et al. 2002). Although land–sur-
face models form an integral part of GCMs 
and topographic and hydrologic factors play 
an important role in local transmission mod-
els, such processes are more readily included 
within microsimulations that typically lack 
analytic transparency. Incorporating simpler 
population models within climate-driven 
transmission models has received only lim-
ited attention to date (Pascual et al. 2006). 
However, the simplified biology behind such 
models can incorporate the fundamental 
mechanisms of temperature-dependent mor-
tality of adult mosquitoes and development 
characteristics of larvae, which could result 
in a reasonable model for the rainfall-depen-
dent survival of immature vector stages and 
a means of capturing the effects of extreme 
rainfall on existing breeding sites. Moreover, 
because the effects of seasonality in mosquito 
abundance enter dynamical models via the 
transmission term, it is also possible to quan-
tify how much temporal variability is required 
in the total population size to significantly 
affect transmission dynamics.

Our analysis has provided several novel 
insights regarding quantifying the impact of 
climate on Anopheles population dynamics. 
First, although the effect of temperature on 
vector abundance has a strong physiologic 
basis and can thus be meaningfully captured 

by deterministic population models, the 
effects of rainfall are less predictable and more 
difficult to quantify. Second, considering the 
stochastic climate-driven population processes 
above, we find that the probability of having 
M mosquitoes at time t tends to a Poisson 
distribution with mean λ(R,T ) ÷ µ(T ), inde-
pendent of the initial conditions, where 
λ(R,T ) and µ(T ) are the birth and per-
capita mosquito death rates, respectively 
[see Supplemental Material (doi:10.1289/
ehp.0901256)]. Given this, we can also 
show that the probability of ultimate pop-
ulation extinction is exp[– λ(R,T ) ÷ µ(T )]. 
This expression, together with climate data 
from WorldClim (Hijmans et al. 2005; 
WorldClim 2009), allows us to predict mos-
quito fadeout probabilities over a region, as 
portrayed in Figure 1A for Tanzania. Given 
that the transmission model here is deter-
ministic, mosquito fadeout probabilities may 
be used as a very approximate indicator of 
malaria fadeout probabilities, but future work 
should consider a full stochastic transmission 
model with more robust parameterization for 
more direct estimations. Figure 1B and C 
compare the mean temperature and rainfall 
values for the coastal region of Dar es Salaam 
and the central region of Singida, highlighting 
the strong seasonality and spatial heterogene-
ity in climate across Tanzania, particularly in 
rainfall. Figure 1A shows how the effects of 
spatial heterogeneity in the climate drivers of 
mosquito abundance can be used to deter-
mine the likelihood of malaria elimination 
across an endemic country like Tanzania. Dar 
es Salaam and other coastal regions generally 
demonstrate a lower fadeout probability than 
inland regions, and examination of Figure 1B 
and C suggest this is more strongly driven by 
rainfall, rather than temperature, variation 
between regions. The temporal and spatial 
heterogeneity in mosquito extinction high-
lights the strategic importance of assessing 
control measures driven by regional factors, 

as well as emphasizing the need to incorpo-
rate seasonal climatic variability in transmis-
sion models. Environmental drivers other than 
rainfall and temperature will also drive extinc-
tion dynamics, and future transmission models 
should take a more thorough account of vari-
ability in a wider range of atmospheric variables, 
as well as the potentially strong role of factors 
such as land use, soil type, local topography, 
and ongoing vector interventions.

Malaria invasion dynamics. An important 
limitation of statistical models is the inability 
to understand the dynamical properties of 
disease outbreaks, such as the rate of spread 
in naïve populations under changing envi-
ronmental conditions. Here, we consider the 
transmission model during the early stages 
of an outbreak when the human and mos-
quito populations are almost entirely suscep-
tible. We can then apply analytic techniques 
[see Supplemental Material (doi:10.1289/
ehp.0901256)] to derive an equation for the 
growth rate r of the epidemic, and substitut-
ing from Supplemental Material, Tables 1 
and 3 and R0(R,T ) from Equation 1 allows 
numerical solution. We assume sufficient 
rainfall for R0 > 1 and consider the outbreak 
doubling time ln(2) ÷ r as a function of tem-
perature in Figure 2A.

We identified a clear temperature win-
dow within which the rate of malaria 
spread is significantly increased (around 
32–33°C for both Plasmodium  falciparum 
and Plasmodium vivax), with the number of 
cases doubling roughly every month and a 
half when mosquito density is typical of the 
rainy season and two and a half months when 
the vector density drops to half this value. 
At small deviations from these temperatures, 
stability of doubling time estimates depends 
strongly on mosquito density. The shape of 
the doubling time curves indicates that on 
either side of this window, fewer mosquitoes 
survive long enough for the Plasmodium para-
site to complete its life cycle within the host, 

Figure 1. Fadeout probability and monthly temperature and rainfall averages in Tanzania. (A) Probability of local seasonal extinction for mosquitoes across 
Tanzania in April; darker areas indicate a higher probability of fadeout. (B) and (C) represent average temperature and rainfall values for Dar es Salaam, Singida, 
and Tanzania as a whole. Data from WorldClim (2009).
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essentially because of the rapid decline in vec-
tor survival probability at higher temperatures 
and a rapid increase in the duration of the 
cycle at lower temperatures. At fixed vector 
densities, P.  falciparum and P. vivax differ 
by a few weeks in their rate of spread, with 
P. vivax spreading more rapidly. Figure 2B 
demonstrates that the transmission rate 
depends more strongly on vector density than 
on parasite species, with a doubling in vec-
tor density more than halving the doubling 
time and on the order of months, rather than 
weeks. This is true of both P. falciparum and 
P. vivax.

R0 under static environmental conditions. 
Under the common, but highly simplified, 
assumption of vector abundance independent 
of environmental conditions, we can substi-
tute factors in Equation 1 with parameters in 
Supplemental Material Table 1 (doi:10.1289/
ehp.0901256) and the expressions from 
Martens (1998) to obtain a temperature-
dependent expression for R0 as
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but we have already found that mos-
quito abundance is strongly dependent on 
environmental variables. Thus, relaxing the 
assumption of a fixed vector population size, 
substituting the dependence on temperature 
and rainfall from the stochastic population 
model, and making the improved approxi-
mation that the vector population is at a cli-
matically determined equilibrium, we can 
substitute λ(R,T )/µ(T ) for the vector popula-
tion into Equation 2 to obtain a more accurate 
dependence of R0 on temperature and rainfall. 
At this equilibrium, R0∝M∝λ, and hence the 
dependence of R0 on rainfall, is the same as 
the dependence of λ on rainfall. Figure 2A 
qualitatively illustrates the dependence of R0 
on rainfall, and the dependence on tempera-
ture is plotted in Figure 2C. As in the invasion 

dynamics, the R0(T ) curve illustrates an opti-
mum transmission window around 32–33°C 
[where T = Tmax (maximum temperature)], 
and the center of this window is identical for 
P. falciparum and P. vivax. It is also easy to see 
that R0(T ) is strongly driven by the probabil-
ity that mosquitoes survive long enough for 
parasites to complete their life cycle. Figure 2C 
begins to address the issue of how transmission 
may shift with climate change. For a ΔT rise 
in mean temperature, endemic regions where 
T + ΔT < Tmax will experience a considerable 
increase in prevalence as conditions become 
more favorable for transmission, whereas in 
regions where T > Tmax, the survival probabil-
ity of mosquitoes declines and transmission 
is reduced. Thus, the major impact of these 
results is that although the global distribu-
tion of malaria will change as climatic vari-
ables change, the impact will not always be 
for the worse. However, subject to sufficient 
mosquitoes to drive transmission, it is clear 
that increasing temperatures always increase 
the probability of emergence in regions where 
there is currently insufficient transmission to 
drive endemnicity, as these regions always have 
T + ΔT < Tmax. Indeed, more robust model 
parameterization and validation will permit 
identification of areas where a given shift in 
average temperatures will permit emergence 
at doubling rates captured by Figure 2B, as 
well as a better understanding of how changes 
in rainfall affect the possibility of emergence 
and endemnicity.

The effects of seasonality in rainfall. So far, 
we have considered a deterministic transmis-
sion model within an unchanging environ-
ment. Although this yields useful insights, there 
is generally considerable environmental vari-
ability and uncertainty within the system. This 
may arise from natural temporal fluctuations in 
environmental variables, parameter inference, 
or estimation of parameters from other sources 
(e.g., predictions from GCMs for different 
emission scenarios). Full consideration of the 
implications of uncertainty and variability is 
beyond the scope of this paper; thus, we make 
only preliminary comments here.

The inclusion of periodic forcing in epi-
demic models has received attention across a 
range of infectious diseases (Grassly and Fraser 
2006), although the forcing of malaria trans-
mission by climate variability has received 
only limited attention to date (McKenzie et al. 
2001). Recent theoretical advances have con-
sidered how seasonality in transmission rates 
affect R0 and the growth rate of an outbreak 
(Bacaër and Ouifki 2007). Understanding 
the effects of temperature variability is chal-
lenging, as temperature dependence appears 
in multiple places in the transmission model, 
whereas a preliminary understanding of the 
impact of rainfall variability is simpler by 
virtue of appearing only through the vector 
abundance. Thus, we consider here only the 
effect of rainfall variability on R0 and assume 
no variability in temperature.

Given the strong dependence of vector 
abundance on rainfall, we make the simplifying 
assumption that M(t)∝R (t)∝[1 + εcos(ωt-ϕ)], 
where ε  is the amplitude of a constant rep-
resenting seasonal variation (dimensionless) 
and ω  represents the frequency of seasonal 
variation (in months–1). If mmax represents the 
maximum number of mosquitoes per human 
and we simplify the analysis by ignoring the 
human and vector latent periods, a calculation 
identical to that in Bacaër (2007) shows that 
R0 may be approximated as
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Fitting to historical WorldClim rainfall 
data for Tanzania and letting mmax = 40, 
representing typical vector abundance per 
human during the rainy season, gives ω ≈ 0.65 
months–1 and ε ≈ 0.98. Supplemental Material, 
Figure 1 (doi:10.1289/ehp.0901256), shows 
that rainfall seasonality always decreases R0 in 
a static environment, with a small amount of 
seasonality having a more significant impact 
on transmission around the optimum tem-
perature window of 32–33°C. Given the 

Figure 2. Effect of temperature and rainfall on mosquito population and Plasmodium species dynamics. (A) The mean number of mosquitoes per unit area as a 
function of temperature and rainfall. (B) Estimated doubling times of P. falciparum and P. vivax; high and low refer to vector density values: the number of mosqui-
toes per humans (M ÷ N). (C) The dependence of R0 on temperature for P. falciparum and P. vivax.
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relationship between R0 and the level of con-
trol required for elimination, this highlights 
the importance of accounting for uncertainty 
when using models to inform policy. Here, 
the effect of not doing so would overestimate 
the level of resources required for elimination.

Changes in R0 distribution. We predicted 
and mapped changes in the R0 distribution 
of malaria across Tanzania with predicted 
changes in temperature and rainfall. We use 
predictions of the HadCM3 GCM for the 
A2a and B2a emission scenarios from the 
WorldClim database (Hijmans et al. 2005; 
Nakicenovic et al. 2000; WorldClim 2009) 
and apply Equation 3 to compute the value 
of R0 per pixel, fitting rainfall data for each 
scenario to estimate ε and ω. We calculate R0 
for the current conditions and values for 2080 
under A2a and B2a, computing the R0 differ-
ence map to illustrate the change in P. falci-
parum for the peak rainy season in Tanzania, 
and we can readily relate changes in R0 to 
changes in endemic prevalence when R0 > 1.

Figure 3A compares the current temper-
ature and rainfall profile for Tanzania with 

the HadCM3 predictions (averaged across all 
regions) for 2080. The A2a scenario corre-
sponds to considerable increases in average 
temperature across Tanzania, ranging from 
3.4°C in November to 5.2°C in June, whereas 
B2a increases (by virtue of being more ecologi-
cally friendly) are around 1–1.5°C lower than 
A2a throughout the year. Figures 3A and B 
plot predicted changes in R0 for April (corre-
sponding to the approximate peak in rainfall) 
for each scenario. As current temperatures are 
below the peak transmission window around 
32–33°C (the current maximum across the 
country is around 28.5°C), both A2a and B2a 
predict increases in R0 across Tanzania with-
out exception. Under A2a, the majority of 
Tanzania will experience a 4–5°C increase in 
temperature, and given the current tempera-
ture distribution, Figure 3B illustrates that the 
western regions of Rukwa and Kigoma (partic-
ularly the districts bordering the Democratic 
Republic of Congo), districts within the south-
ern region of Morogoro, the southern borders 
of Iringa, Ruvuma, and Mtwara with Malawi 
and Mozambique, and all coastal regions are 

likely to experience significant increases in 
R0 by around 1–1.5 in April. This guarantees 
endemnicity in these areas and successful inva-
sion of malaria where current climate is not 
yet suitable for transmission.

Under B2a, most of Tanzania experience 
a smaller increase in temperature, around 
2.5–3.5°C, and although the same regions 
as before see the largest increases in R0, these 
increases are considerably less than under A2a 
because of the nonlinear dependence of R0 
on temperature. The mean increase in R0 per 
region across all regions in Tanzania is 0.87 
(variance 0.04) under A2a and 0.52 (vari-
ance 0.03) under B2a. It is also worth noting 
that although both scenarios predict a greater 
temperature increase in May through to 
August than in April, rainfall in these months 
drops off rapidly. Further analysis, based on 
improved data on the effects of precipitation 
on mosquito abundance, is required to see if 
the increase in temperature, potentially mov-
ing more regions closer to the peak transmis-
sion window (increasing R0), is offset by the 
lower vector abundance due to reduced rain-
fall (decreasing R0). Such analysis, particularly 
based on limited data, is beyond the scope of 
this paper but represents an important area for 
future research.

Discussion
The advantages of using process-based trans-
mission models for understanding the impacts 
of climate change on environmentally sensitive 
infectious diseases have been widely discussed 
(Craig et al. 1999; Hoshen and Morse 2004; 
Lindsay and Birley 1996; Lindsay and Martens 
1998). Specifically, mathematical models 
may overcome problems connected with the 
use of statistical methods in environmental 
infectious disease epidemiology via their abil-
ity to address multiplicative-exposure effects, 
nonlinear feedback pathways, spatiotempo-
ral heterogeneities, and complex transmission 
dynamics. However, it is also clear from our 
work that significant progress will be made 
only by developing and analyzing modeling 
frameworks that are able to realistically cap-
ture key linkages between climate and patho-
gen transmission processes. In this study, we 
have furthered the progress in this area for 
climate-based malaria transmission modeling 
in three key areas. First, in contrast to previ-
ous approaches of assuming transmission only 
when rainfall is greater than certain thresholds 
(Lindsay and Martens 1998), we, along with 
complementary research elsewhere (Hoshen 
and Morse 2004), emphasize the importance 
of incorporating explicit models of rainfall 
within dynamic transmission models. Second, 
we illustrate the importance of modeling the 
dependence of immature mosquito develop-
ment on climatic factors, demonstrating how 
a dynamic stochastic vector population model 

Figure 3. Rainfall and temperature profiles and predicted R0 changes in Tanzania. (A) Current rainfall 
and temperature profiles for Tanzania versus the predictions of HadCM3 for 2080 under A2a and B2a 
emission scenarios (data from WorldClim 2009). Predicted changes in R0 across Tanzania in 2080 under 
(B) A2a and (C) B2a emission scenarios where ε ≈ 0.98 and ω ≈ 0.65 at present and ε ≈ 0.99 and ω ≈ 0.65 
under A2a and B2a.
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may be incorporated within transmission 
modeling frameworks. Finally, although mech-
anistic models linking climate and malaria 
have been derived previously, these have been 
underexploited by virtue of considering only 
static properties of disease transmission. We 
show how it is additionally possible to address 
issues related to infection dynamics, such as 
emergence and invasion dynamics, the impact 
of seasonal variability, and disease extinction, 
all of which have important strategic bearings 
for assessing the impact of climate changes on 
transmission within and across regions.

Our analyses of the present model have 
yielded several new insights regarding the poten-
tial impact of climate change on the dynamics 
of malaria transmission. The first major finding 
is that by influencing vector abundance, changes 
in rainfall patterns in particular strongly govern 
malaria endemicity, invasion, and extinction. 
In contrast, temperature effects, by affecting in 
multiple parts of the pathogen life cycle, have 
a more complex relationship with transmission 
and a stronger influence on the rate of disease 
spread, but only when sufficient rainfall exists 
to sustain vector development and survival. 
Another key finding, which supports previ-
ous suggestions, is that seasonality in rainfall 
may have marked effects on R0 and extinction 
dynamics, even at optimal transmission temper-
atures. Changing patterns of incidence due to 
changing environmental conditions on longer 
time scales, for example, the effects of El Niño-
Southern Oscillation, have been considered 
(Bouma and van der Kaay 1996) and merit fur-
ther study. Similarly, it is clear that when such 
studies are combined with concepts from infec-
tion dynamics, integrated modeling analyses 
will prove crucial to improving understanding 
about how long-term global climate change 
will affect local environmental conditions and 
hence whether a region may experience a wors-
ening or improvement in prevalence as global 
warming increases. To illustrate this approach, 
we apply these ideas to the generation of risk 
maps for Tanzania to highlight the sensitivity 
of spatiotemporal changes in R0 to predicted 
shifts in rainfall and temperature under the A2a 
and B2a scenarios, while taking into account 
of seasonal fluctuations in rainfall. We show 
that mosquito density more strongly drives the 
rate of emergence in nonimmune populations 
than the infection dynamics of Plasmodium 
species per se, demonstrating how integrated 
climate- and disease-modeling frameworks 
allow dissection of spatial heterogeneities in cli-
mate-induced malaria transmission and hence 
the nature of local interventions to mitigate or 
counter such changes.

Despite advancing new insights into the 
roles of rainfall and temperature on infection 
dynamics, our results highlight that consid-
erable work, experimental, theoretical, and 
policy based, remains to be modeled in an 

integrated fashion if we are to more realisti-
cally capture the impact of climate change on 
disease transmission. Although certain aspects 
of transmission dynamics are physiologic (and 
therefore deterministic) drivers, it is clear that 
heterogeneities across the human, mosquito, 
and parasite populations introduce consider-
able uncertainties into the system. More real-
istic transmission models need to be spatial if 
they are to better predict disease persistence 
and spread, and a key challenge is selecting the 
most appropriate scale at which to model. This 
is driven not only by the resolution of avail-
able climate data, but also from the knowledge 
that modeling at too fine a scale may translate 
poorly into global observables, while oversim-
plifying local heterogeneities may neglect key 
processes influencing observations. Another 
challenge is how best to integrate ecological 
drivers with sociological processes underpin-
ning disease transmission in vulnerable com-
munities, an area only now beginning to be 
examined (Lindsay and Birley 1996; Lindsay 
and Martens 1998; Patz et al. 1996). Improved 
understanding of the effects of temporal vari-
ability on stochastic disease dynamics is also 
required, and the interaction of these effects 
with the chaotic nature of climate systems may 
lead to complex dynamics. The application of 
complexity theory to climate–disease systems 
may then be called for to study such inter-
actions (Janssen and Martens 1997). Further 
experimental research on the effects of atmo-
spheric variables on transmission also requires 
considerable attention. The survival function 
of adult mosquitoes with temperature is based 
here on Martens (1998), assuming a constant 
humidity of 70–80%, yet we know that the 
longevity of Anopheles mosquitoes is signifi-
cantly shorter at humidities < 50% (Warrell 
and Gilles 2002). This illustrates that it is 
important to understand not only which envi-
ronmental variables drive transmission, but also 
how these variables themselves interact.

These issues are all ultimately closely 
linked with the implementation of interven-
tion strategies for control and elimination. 
Our results, demonstrating the existence of 
environmental windows of low transmission, 
are relevant to the timing and scale of control 
by representing opportunities for driving out 
infection reservoirs. A better understanding of 
transmission forcing by climate from model-
ing frameworks will also lead to improved 
insights into issues of local elimination and 
the potential prospects of global eradication. 
Questions such as the timing and choice of 
strategies, the imposition of intervention 
measures based on local conditions (bio-
logical and environmental), and the need 
to design optimal management approaches 
accounting for adaptive dynamics (Janssen 
and Martens 1997) may also be guided by 
such models. Our finding that mosquito 

density fluctuations may significantly influ-
ence malaria emergence reinforces the need 
to include vector management options in 
mitigation or adaptation strategies, high-
lighting a striking instance of how dynamic 
climate-driven disease models can usefully 
guide policy development. In addition to cli-
matic factors, changing prevalence trends may 
be caused by factors such as changes in sur-
veillance, treatment, resistance, and behavior 
patterns of vectors and humans, and under-
standing the relative contributions of these 
factors is key. Our results show not only how 
mathematical models are important for high-
lighting current knowledge limitations and 
increasing our insights into the underlying 
processes of climate change and transmission, 
but also how they are required for facilitating 
identification of robust strategies for reducing 
local and global malaria burden.
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